采用聚类分析初级医疗机构哮喘发作的特征
2012/04/06
原理:有哮喘发作病史的患者,未来出现哮喘发作的风险较高。寻找哮喘表现型的特征有助于改善哮喘管理,这也包括降低哮喘发作。
目的:本研究采用聚类分析,寻找与哮喘发作病史相关的不同患者特征。
方法:对初级医疗机构中两项评价成人和儿童哮喘患者哮喘控制的横断面研究数据进行分析。采用递归分割方法,通过监督聚类分析,寻找能区别不同哮喘亚型的特征。
结果:共2205名成人和2435名儿童和青少年哮喘患者入选。在7个成人聚类中寻找主要的预测指标,其中包括哮喘专家就诊、工作时间、过度急救用药。聚类7中出现哮喘发作的相对危险(RR)显著增加(2.88; 95%CI, 2.46-3.36),其中更多的女性主诉严重哮喘、有较高的体重指数、有鼻窦感染、胃食管反流病、皮肤过敏和较低的哮喘控制评分。6个儿童聚类中寻找的主要特征包括哮喘专家就诊、旷课天数、种族和年龄。聚类6中患者哮喘发作的风险更高(2.36; 95% CI, 2.11-2.64),其中这些患者的哮喘更严重、存在鼻窦炎和皮肤过敏及哮喘控制评分较低。
结论:可采用监督聚类分析寻找特定的危险因素。该方法能对有独特特征的患者进行归类,以鉴别哮喘发作的高危患者。
(苏楠 审校)
J Asthma. 2012 Mar;49(2):158-69. Epub 2012 Feb 2.
Characterization of asthma exacerbations in primary care using cluster analysis.
Ortega H, Miller DP, Li H.
Source
Respiratory & Immuno-inflammation, Medicines Development Center, GlaxoSmithKline , Research Triangle Park, NC , USA .
Abstract
RATIONALE:Patients with a history of asthma exacerbations are at a higher risk for future episodes of severe asthma exacerbations. Characterization of asthma phenotypes could help improve asthma management, including reducing exacerbations.
AIM:The aim of this study is to identify distinctive patient characteristics associated with a history of asthma exacerbations using cluster analysis.
METHODS:We used data assessing asthma control from two cross-sectional surveys of adult and pediatric patients in the primary care setting. A supervised cluster analysis with recursive partitioning approach was applied to identify characteristics that maximized the differences across subgroups.
RESULTS:The sample comprised 2205 adults and 2435 children and adolescents with asthma. Key predictors were identified in seven adult clusters including visiting an asthma specialist, number of hours worked, and excessive use of rescue medication. The rate ratio (RR) for having an exacerbation was significantly higher (2.88; 95% confidence interval (CI), 2.46-3.36) in Cluster 7, with more female patients reporting severe disease, high body mass index, sinus infections, gastroesophageal reflux disease, skin allergies, and lower asthma control score. Features identified in the six pediatric clusters included visiting an asthma specialist, missed school days, race/ethnicity, and age. The RR for having an exacerbation was higher in Cluster 6 (2.36; 95% CI, 2.11-2.64), with patients reporting more severe disease, sinus and skin allergies, and lower asthma control score.
CONCLUSIONS:Identification of specific risk factors can be enhanced by using supervised cluster analysis. This approach allows grouping of patients with unique characteristics to help identify patients at higher risk of exacerbations.
J Asthma. 2012 Mar;49(2):158-69. Epub 2012 Feb 2.
上一篇:
儿童哮喘中基因-基因和基因-环境相互作用:多因素降维法
下一篇:
哮喘患者外周血单核细胞超氧化的过氧化物氧化还原酶与哮喘严重程度相关