支气管哮喘治疗新药的研究进展
2019/12/03
吴超杰 吉宁飞 黄茂
江苏省人民医院(南京医科大学第一附属医院)呼吸与危重症医学科 210029
支气管哮喘(简称哮喘)是以慢性气道炎症为特征的异质性疾病。随着工业化的进展,我国哮喘患病率也在逐年上升[1]。尽管全球哮喘防治创议(GINA)的推广使得大多数哮喘患者病情得到控制,但仍有5%~10%的哮喘患者对吸入性糖皮质激素(ICS)疗效差,即使联合长效β2受体激动剂(LABA)、白三烯调节剂(LTRA)、长效抗胆碱药物(LAMA)甚至口服糖皮质激素等仍很难达到哮喘完全控制或良好控制[2]。从发病机制着手,探索和研发高效、个体化的新型哮喘治疗药物成为研究热点。本文就新型哮喘治疗药物的研究进展进行综述。
一、新的ICS、LABA、LAMA和磷酸二酯酶(PDE)4抑制剂
ICS是哮喘的一线治疗药物,近年来新一代ICS如环索奈德、糠酸莫米松和糠酸氟替卡松等陆续上市。环索奈德本身无代谢活性,在肺部可转化成有代谢活性的去异丁酰基环索奈德而具备强大的抗炎活性,并且具有肺部沉积率高、滞留时间长、生物利用度高、口腔沉积率低、血浆清除快以及不良反应少等特点。2004年环索奈德在澳大利亚批准上市,适应证是≥12岁的哮喘患者,并且对运动性哮喘疗效较好[3]。糠酸莫米松干粉吸入剂于2005年3月通过美国食品药品监督管理总局(FDA)批准,适应证同样是12岁及以上的哮喘患者。最近有研究表明糠酸莫米松对5~11岁的儿童及青少年哮喘患者同样有效,并且安全性好[4]。糠酸氟替卡松能够高亲和力结合肺组织的糖皮质激素受体,并且比其他ICS结合持久[5],已于2014年在美国上市。Meta分析显示,糠酸氟替卡松(100μg,每日1吸)与丙酸氟替卡松(250μg,每日2吸)的疗效相当并且安全性好[6]。
目前临床上LABA以福莫特罗和沙美特罗为代表,维兰特罗(Vilanterol)、茚达特罗(Indacaterol)、奥达特罗(Olodaterol)、卡莫特罗(Carmoterol)和阿福特罗(Arformoterol)等新型LABA也在研究中。新型ICS/LABA复合制剂糠酸氟替卡松/维兰特罗已于2015年在美国上市,研究显示与传统的ICS/LABA复合制剂比较,糠酸氟替卡松/维兰特罗与肺组织的亲和力更强,β2受体选择性更高,且每日仅需吸入1次,依从性更佳。美国、欧洲等国家和地区的临床试验也都显示糠酸氟替卡松/维兰特罗具有良好的治疗效果和安全性[7]。但在疗效方面,糠酸氟替卡松/维兰特罗(100μg/25μg,每日1吸)与丙酸氟替卡松/沙美特罗(250μg/50μg,每日2吸)并无显著性差异[8]。环索奈德/福莫特罗、糠酸莫米松/茚达特罗等复合制剂目前尚处于临床试验阶段。有II期临床试验显示,环索奈德/福莫特罗(320μg/9μg,每日2吸)与丙酸氟替卡松/沙美特罗(250μg/50μg,每日2吸)对中度持续性哮喘的疗效相似,安全性亦无明显差异[9]。另有研究显示糠酸莫米松/马来酸茚达特罗QMF149(400μg/500μg,每日1次)的作用时间更长,长期治疗的有效性和安全性均较好[10]。
噻托溴铵是临床常用的LAMA,目前已经上市的噻托溴铵有干粉吸入剂和软雾剂两种剂型。研究显示,在ICS/LABA基础上联用噻托溴铵软雾剂可使哮喘的重度急性发作风险降低,改善肺功能,并且不良反应无明显增加[11]。2015年起,GINA推荐噻托溴铵用于≥18岁慢性持续期哮喘患者的第4~5级治疗。噻托溴铵软雾剂由于其喷射速度慢、持续时间长,更有利于药物在肺部的沉积。芜地溴铵(Umeclidinium bromide)、格隆溴铵(Glycopyrrolate bromide)、阿地溴铵(Aclidinium bromide)目前也在临床研究中。III期临床试验显示,芜地溴铵可以改善哮喘患者FEV1,不良事件无明显增加[12]。阿地溴铵可抑制成纤维细胞的增殖和迁移,从而抑制气道重塑[13],有望成为哮喘的治疗用药。格隆溴铵联合PDE3/4抑制剂RPL554具有较好的协同作用,导致中、小气道的舒张更明显[14],但尚未进入临床试验。
近年来一些新型ICS/LABA/LAMA三药联合制剂也在研发中,以糠酸莫米松/茚达特罗/格隆溴铵和糠酸氟替卡松/维兰特罗/芜地溴铵为代表,但相关临床研究主要集中在慢性阻塞性肺疾病(COPD)领域。有认为ICS/LABA/LAMA三药联合制剂可能适用于ICS/LABA治疗仍不能控制的重症哮喘患者[15]。
环磷酸腺苷(cAMP)和环磷酸鸟苷(cGMP)是细胞内最重要的第二信使,在免疫炎症、细胞凋亡等信号传导通路中发挥重要作用。PDE4抑制剂家族是维持cAMP稳态的重要调节因子。选择性PDE4抑制剂有罗氟司特(Roflumilast)、西洛司特(Cilomilast)和GSK256066。研究表明罗氟司特不仅可以提高中-重度哮喘患者的控制水平,还可以改善中-重度哮喘患者的肺功能[16]。而西洛司特已被FDA否决用于慢阻肺治疗,哮喘领域研究亦无建树。GSK256066是吸入型制剂,研究显示GSK256066可改善过敏原及乙酰甲胆碱激发的哮喘速发相和迟发相应答,并且耐受性良好,可能成为有效的哮喘治疗药物[17]。
二、靶向治疗药物
1.抗IgE单克隆抗体(单抗)
奥马珠单抗(Omalizumab)已于2003年在美国上市,也是第一个批准用于哮喘治疗的靶向药物。奥马珠单抗可减少高剂量ICS/LABA治疗下仍表现为未控制的重症过敏性哮喘患者的急性发作次数、改善肺功能,并且不增加不良反应[18];也可以减少口服激素用量,降低激素使用的不良事件发生率[19]。2017年8月26日奥马珠单抗正式被我国批准上市,用于治疗≥12岁的中-重度持续性过敏性哮喘。Quilizumab目前已完成II期临床实验,研究发现Quilizumab可降低重症哮喘患者血清IgE水平,但不能改善肺功能和症状[20]。Ligelizumab、Lumiliximab等IgE抗体目前正在进行临床注册研究。与奥马珠单抗比较,Ligelizumab治疗组的轻度哮喘患者在吸入过敏原激发后的肺功能改善以及对过敏原皮试反应更优[21];而Lumiliximab的疗效尚不明确[22]。
2.细胞因子抗体
(1)抗白细胞介素(IL)-5单抗:IL-5由Th2细胞分泌,是调节嗜酸性粒细胞功能最重要的细胞因子,在嗜酸性粒细胞的增殖、趋化、募集过程中发挥重要作用。目前临床应用的抗IL-5单抗有美泊利单抗(Mepolizumab)和瑞利珠单抗(Reslizumab)。美泊利单抗是一种人源化IL-5单抗,已于2015年在美国上市,治疗方案是每4周皮下或静脉注射100mg。研究表明美泊利单抗可降低重症嗜酸粒细胞性哮喘患者的急性发作[23]。瑞利珠单抗于2016年通过FDA批准,主要适应证是伴有血嗜酸性粒细胞计数升高且高剂量ICS治疗仍控制不佳的哮喘患者。与安慰剂对比,瑞利珠单抗可以降低中-重度嗜酸粒细胞性哮喘患者急性发作的风险,并改善患者的肺功能[24]。Benralizumab是一种可与IL-5Rα结合的人源化单抗,通过抗体依赖性细胞介导的细胞毒性作用,从而消耗嗜酸性粒细胞和嗜碱性粒细胞。III期临床试验表明,Benralizumab可减少重症未控制哮喘患者的急性发作风险,并且耐受性良好[25]。
(2)抗IL-4单抗:IL-4是肺部嗜酸性粒细胞浸润、非IL-5依赖途径的重要炎症因子之一,参与了哮喘的发生发展。Dupilumab、匹曲白滞素(Pitrakinra)以及AMG317等共同作用于IL-4和IL-13的单抗,目前处于临床试验阶段。临床试验显示,Dupilumab可以改善中-重度哮喘患者的肺功能,降低急性发作风险[26];匹曲白滞素的疗效尚不明确[27];AMG317对哮喘控制问卷(ACQ)评分较高的亚组哮喘患者可能有效[28]。
(3)抗IL-13单抗:Th1/Th2分化失衡是哮喘的重要发病机制,IL-13可间接促进T细胞向Th2细胞分化,同时IL-13也是肺部嗜酸性粒细胞浸润非IL-5依赖途径的重要炎症因子。Tralokinumab和Lebrikizumab是人源化免疫球蛋白IgG4单抗,安卢珠单抗(Anrukinzumab)和GSK679586是人源化IgG1单抗,均特异性作用于IL-13并抑制其功能。研究表明,Tralokinumab可改善中-重度哮喘患者的肺功能,安全性较好,但不能改善患者的ACQ-6评分[29];也有研究表明,Tralokinumab虽然可改善重症未控制哮喘患者的肺功能,安全性和耐受性良好,但并不能降低急性发作风险[30]。Corren J等[31]发现,Lebrikizumab可改善哮喘患者尤其是伴高骨膜蛋白水平者的肺功能。安卢珠单抗的疗效尚不明确[32],GSK679586则被证实对哮喘治疗无效[33]。
(4)抗IL-17单抗:IL-17由Th17细胞分泌,参与中性粒细胞性哮喘的发生发展。抗IL-17单抗有Brodalumab和Secukinumab。Brodalumab已完成IIa期临床试验,遗憾的是对中-重度哮喘无效[34}。研究显示,Secukinumab并不能抑制臭氧诱发的健康受试者的气道中性粒细胞炎症[35}。因此,目前抗IL-17治疗的前景尚不明确。
(5)抗IL-9单抗:IL-9对维持T细胞存活、促进T细胞增殖具有重要意义,参与了哮喘的发病。MEDI-528是人源化IL-9单抗,IIb期临床试验证实其对未控制的中-重度哮喘患者无效[36];对改善轻-中度哮喘以及运动性哮喘有一定的疗效[37]。
(6)抗肿瘤坏死因子(TNF)-α单抗:TNF-α是哮喘发病中的重要促炎因子,参与了哮喘的炎症反应过程,同时TNF-α能诱导气道高反应性(AHR)。抗TNF-α单抗有依那西普(Etanercept)、英利昔单抗(Infliximab)、依那西普(Etanercept)和Golimumab。IIa期临床试验结果显示,依那西普对激素抵抗型哮喘有效,但有诱发肿瘤和感染的风险[38];但也有研究证实依那西普对中-重度哮喘无效[39]。英利昔单抗可改善中度持续性哮喘患者的最大呼气流量(PEF)变异率,降低急性发作风险[40]。Golimumab则被证实无效[41]。
(7)抗上皮源性细胞因子单抗:IL-25、IL-33和胸腺基质淋巴细胞生成素(TSLP)等细胞因子在人类肺组织和免疫细胞中表达,又称为上皮源性细胞因子。可以通过促进Th2型细胞因子、黏附因子和趋化因子的释放,间接增强Th2型免疫应答。目前抗上皮源性细胞因子单抗仍在研发中。抗TSLP单抗AMG157已完成1个IIa期临床试验,研究结果显示AMG157可改善过敏性哮喘患者的喘息反应,降低血和痰嗜酸性粒细胞水平[42]。
(8)抗粒细胞-巨噬细胞集落刺激因子(GM-CSF)单抗:GM-CSF在嗜酸性粒细胞的生长和分化中起着重要作用。MT203是人源化抗GM-CSF单抗,可减少嗜酸性粒细胞的存活和活化[43]。另一种GM-CSF单抗KB003可改善嗜酸性粒细胞性哮喘患者的肺功能,但并不能改善哮喘控制,也不能降低急性发作次数[44]。
三、其他药物
随着表观遗传学的发展,近年来发现miR-145、miR-155、miR-106a、miR-126、miR-221、miR-133a及Let-7等微小RNA(microRNA)可以通过调节炎性细胞因子的合成和释放、调控T细胞分化以及影响支气管平滑肌细胞的可塑性等多种途径,参与支气管哮喘发病[45-49]。靶向miRNA治疗可有效减少哮喘急性发作次数、逆转过敏状态以及拮抗气道重塑[50],但miRNA靶向治疗研究仍集中于基础研究领域。
转录因子可通过影响炎症因子、炎症反应酶类、黏附因子和趋化因子等的表达参与哮喘的发生发展。在炎症细胞因子刺激和淋巴细胞活化过程中,核因子КB(NF-КB)通路是各信号通路的枢纽。GATA-3可以促进CD4+ T细胞向Th2细胞分化,同时也是IL-4、IL-5和IL-13表达所需要的重要转录因子。因此NF-КB抑制剂和GATA-3抑制剂引人关注。研究表明Tongyu-tang,一种NF-КB抑制剂,通过抑制NF-КB和MAPK通路,对哮喘有一定疗效[51];一种特异性的GATA-3脱氧核酶(DNAzyme)可能成为哮喘治疗的新手段[52]。还有研究发现,转录激活因子-6(STAT-6)抑制剂可能对阿司匹林哮喘有效[53];选择性趋化因子受体(CXCR2)拮抗剂SCH527123对中性粒细胞性哮喘有一定的疗效[54],另一种CXCR2拮抗剂AZD5069则显示无效[55];Th2表达趋化因子受体(CRTH2)拮抗剂AZD1981对哮喘有一定的疗效[56],而另一种CRTH2拮抗剂BI 671800则显示无效[57]。易感基因和基因多态性有可能与哮喘的严重程度以及治疗反应相关,但目前尚未见针对易感基因及基因多态性的相关临床研究。
动物实验显示,Toll样受体(TLR)7激动剂R848可以降低哮喘小鼠的AHR,而TLR9激动剂CpG可引起哮喘小鼠AHR[58];酪氨酸蛋白激酶抑制剂Nintedanib可减轻哮喘小鼠的气道炎症,减少气道重塑[59];组蛋白去乙酰化酶抑制剂可减少哮喘小鼠的气道重塑和气道高反应性[60];辛伐他汀可改善血脂异常、降低瘦素水平,对肥胖哮喘小鼠有效[61];而阿托伐他汀通过免疫调控调节性T细胞(Treg)的表达,促进过敏性哮喘的炎症控制[62]。此外,还有临床研究显示,小剂量克拉霉素可以改善哮喘患儿的肺功能和气道炎症[63],选择性糖皮质激素受体激动剂AZD5423可以改善过敏性哮喘患者的AHR[64]。
四、总结与展望
新型ICS、LABA、LAMA及其复合制剂和PDE4抑制剂等的陆续上市,使哮喘的治疗疗效进一步提高。而哮喘表型(phenotype)、内型(endotype)、基因型(Genotype)等的复杂,也使得哮喘的精准治疗提入日程。随着哮喘发病机制的进展,根据靶标设计靶向药物会更常见。虽然哮喘的靶向治疗尚处于初期阶段,但目前上市的抗IgE单抗和抗IL-5单抗已让我们看到靶向治疗时代的曙光。哮喘的基因治疗以及针对表观遗传的治疗也是今后可能的哮喘药物研制方向,目前还需要从更多的基础研究着手。
参考文献
1.中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2016年版)[J].中华结核和呼吸杂志,2016,39(9):675-697. DOI:10.3760/cma.j.issn.1001-0939.2016.09.007.
2.林江涛, 王文巧, 周新,等. 我国30个省市城区门诊支气管哮喘患者控制水平的调查结果[J].中华结核和呼吸杂志,2017,40(7):494-498. DOI:10.3760/cma.j.issn.1001-0939.
2017.07.002.
3.Stelmach I, Sztafiska A, Jerzyska J, et al. New insights into treatment of children with exercise-induced asthma symptoms[J]. Allergy Asthma Proc,2016,37(6):466-474. DOI:10.2500/aap.2016.37.3993.
4.Amar NJ, Shekar T, Varnell T, et al. Mometasone furoate (MF) improves lung function in pediatric asthma: A double-blind, randomized controlled dose-ranging trial of MF metered-dose inhaler[J]. Pediatr Pulmonol,2017,52(3):310-318. DOI:10.1002
/ppul.23563.
5.Rossios C, To Y, To M, et al. Long-acting fluticasone furoate has a superior pharmacological profile to fluticasone propionate in human respiratory cells[J]. Eur J Pharmacol,2011,670(1):244-251. DOI:10.1016/j.ejphar.2011.08.022.
6.Tomlinson R, Parks D, Martin A. Comparative Meta-Analysis of the Efficacy of Once-Daily Fluticasone Furoate 100 uG Versus Twice-Daily Fluticasone Propionate 250uG in Adolescents and Adults with Persistent Asthma[J]. Lung,2017,195(5):571-
574. DOI:10.1007/s00408-017-0041-2.
7.Kerwin E,Barnes N,Gibbs M, et al. Fluticasone furoate/vilanterol once daily improves night-time awakenings in asthma patients with night symptoms; post-hoc analyses of three randomized controlled trials[J]. J Asthma,2017:0.[Epub ahead of print] DOI:10.1080/02770903.2017.1362429.
8.Bernstein D,Andersen L,Forth R, et al. Once-daily fluticasone furoate/vilanterol versus twice-daily fluticasone propionate/salmeterol in patients with asthma well controlled on ICS/LABA[J]. J Asthma,2017:0.[Epub ahead of print] DOI:10.1080/
02770903.2017.1386214.
9.Korn S, Buhl R. Efficacy of a fixed combination of ciclesonide and formoterol:the EXCITED-study[J]. Respir Med,2012,106(1):57-67. DOI:10.1016/j.rmed.2011.08.010.
10.Beasley RW, Donohue JF, Mehta R,et al. Effect of once-daily indacaterol maleate/
mometasone furoate on exacerbation risk in adolescent and adult asthma: a double
-blind randomised controlled trial[J]. BMJ Open,2015,5(2):e006131. DOI:10.1136/
bmjopen-2014-006131.
11.Kerstjens HA, Engel M, Dahl R,et al. Tiotropium in asthma poorly controlled with standard combination therapy[J]. N Engl J Med, 2012,367(13):1198-1207. DOI:10.
1056/NEJMoa1208606.
12.Lee LA, Briggs A, Edwards LD, et al. A randomized, three-period crossover study of umeclidinium as monotherapy in adult patients with asthma[J]. Respir Med, 2015, 109(1):63-73. DOI:10.1016/j.rmed.2014.10.009.
13.Milara J,Serrano A,Peiró T,et al. Aclidinium inhibits human lung fibroblast to myofibroblast transition[J]. Thorax,2012,67(3):229-237. DOI:10.1136/thoraxjnl-
2011-200376.
14.Calzetta L, Cazzola M, Page CP, et al. Pharmacological characterization of the interaction between the dual phosphodiesterase (PDE) 3/4 inhibitor RPL554 and glycopyrronium on human isolated bronchi and small airways[J]. Pulm Pharmacol Ther, 2015,32:15-23. DOI:10.1016/j.pupt.2015.03.007.
15.Albertson TE, Chenoweth JA, Adams JY, et al. Muscarinic antagonists in early stage clinical development for the treatment of asthma[J]. Expert Opin Investig Drugs, 2017,26(1):35-49. DOI:10.1080/13543784.2017.1264388.
16.Bateman ED, Goehring UM, Richard F,et al. Roflumilast combined with montelukast versus montelukast alone as add-on treatment in patients with moderate-to-severe asthma[J]. J Allergy Clin Immunol,2016,138(1):142-149.e8. DOI:10.1016/j.jaci.
2015.11.035.
17.Singh D, Petavy F, Macdonald AJ, et al. The inhaled phosphodiesterase 4 inhibitor GSK256066 reduces allergen challenge responses in asthma[J]. Respir Res,2010,11:26-34. DOI:10.1186/1465-9921-11-26.
18.Humbert M, Beasley R, Ayres J, et al. Benefits of omalizumab as add‐on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE[J]. Allergy,2005, 60(3):309-316. DOI:10.1111/j.1398-9995.2004.00772.x.
19.Siergiejko Z, Świebocka E, Smith N, et al. Oral corticosteroid sparing with omalizumab in severe allergic (IgE-mediated) asthma patients[J]. Curr Med Res Opin, 2011,27(11):2223-2228. DOI:10.1185/03007995.2011.620950.
20.Harris JM, Maciuca R, Bradley MS, et al. A randomized trial of the efficacy and safety of quilizumab in adults with inadequately controlled allergic asthma[J]. Respir Res,2016,17:29-39. DOI:10.1186/s12931-016-0347-2.
21.Gauvreau GM, Arm JP, Boulet LP, et al. Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses[J]. J Allergy Clin Immunol,2016,138(4):1051-1059. DOI:10.1016/j.jaci.2016.02.027.
22.Rosenwasser LJ, Meng J. Anti-CD23[J]. Clin Rev Allergy Immunol,2005,29(1):61-72. DOI:10.1385/CRIAI:29:1:061.
23.Ortega HG, Liu MC, Pavord ID, et al. Mepolizumab treatment in patients with severe eosinophilic asthma[J]. N Engl J Med,2014,371(13):1198-1207. DOI:10.1056/NEJMoa1403290.
24.Castro M, Zangrilli J, Wechsler ME, et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials[J]. Lancet Respir Med, 2015,3(5):355-366. DOI:10.1016/S2213-2600(15)00042-9.
25.Fitzgerald JM, Bleecker ER, Nair P, et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlledphase 3 trial[J].Lancet,2016,388(10056):2128-2141. DOI:10.1016/S0140-6736(16)31322-8.
26.Wenzel S, Castro M, Corren J, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial[J]. Lancet,2016,388(10039):31-44.DOI:10.1016/S0140-6736(16)30307-5.
27.Wenzel S, Wilbraham D, Fuller R,et al. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies[J]. Lancet,2007,370(9596):1422-1431. DOI:10.1016/S0140-6736(07)61600-6.
28.Corren J, Busse W, Meltzer EO, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma[J]. Am J Respir Crit Care Med,2010,181(8):788-796. DOI:10.1164/rccm.200909-1448OC.
29.Piper E, Brightling C, Niven R, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma[J]. Eur Respir J, 2013,41(2):330-338. DOI: 10.1183/09031936.00223411.
30.Brightling CE, Chanez P, Leigh R, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial[J]. Lancet Respir Med,2015,3(9):692-701. DOI:10.1016/S2213-2600(15)00197-6.
31.Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma[J]. N Engl J Med,2011,365(12):1088-1098. DOI:10.1056/NEJMoa1106469.
32.Hua F,Ribbing J,Reinisch W,et al. A pharmacokinetic comparison of anrukinzumab, an anti-IL-13 monoclonal antibody, among healthy volunteers, asthma and ulcerative colitis patients[J]. Br J Clin Pharmacol,2015,80(1):101-109. DOI:10.1111/bcp.12589
33.De Boever EH, Ashman C, Cahn AP, et al. Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial[J]. J Allergy Clin Immunol,2014, 133(4):989-996. DOI:10.1016/j.jaci.2014.01.002.
34.Busse WW, Holgate S, Kerwin E,et al. Randomized,double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma[J]. Am J Respir Crit Care Med,2013,188(11):1294-1302. DOI:10.1164/rccm.201212-2318OC.
35.Kirsten A, Watz H, Pedersen F,et al. The anti-IL-17A antibody secukinumab does not attenuate ozone-induced airway neutrophilia in healthy volunteers[J]. Eur Respir J,2013,41(1):239-241. DOI:10.1183/09031936.00123612.
36.Oh CK,Leigh R,McLaurin KK,et al. A randomized, controlled trial to evaluate the effect of an anti-interleukin-9 monoclonal antibody in adults with uncontrolled asthma[J] Respir Res,2013,14:93-103. DOI:10.1186/1465-9921-14-93.
37.Parker JM, Oh CK, Laforce C, et al. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma[J]. BMC Pulm Med,2011,11:14-23. DOI:10.1186/1471-2466-11-14.
38.Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factorαin refractory asthma[J]. N Engl J Med,2006,354(7):697-708. DOI:10.1056/NEJMoa050580.
39.Holgate ST, Noonan M, Chanez P, et al. Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial[J]. Eur Respir J,2011, 37(6):1352-1359. DOI:10.1183/09031936.00063510.
40.Erin EM, Leaker BR, Nicholson GC, et al. The effects of a monoclonal antibody directed against tumor necrosis factor-alpha in asthma[J]. Am J Respir Crit Care Med,2006,174(7):753-762. DOI:10.1164/rccm.200601-072OC.
41.Wenzel SE, Barnes PJ, Bleecker ER, et al. A randomized, double-blind,placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma[J]. Am J Respir Crit Care Med,2009,179(7):549-558. DOI:10.1164/rccm.200809-1512OC.
42.Gauvreau GM, O'Byrne PM, Boulet P, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses[J]. N Engl J Med,2014,370(22):2102-2110. DOI:10.1056/NEJMoa1402895.
43.Krinner EM, Raum T, Petsch S, et al. A human monoclonal IgG1 potently neutralizingthe pro-inflammatory cytokine GM-CSF[J]. Mol Immunol,2007,44(5):916-925. DOI:10.1016/j.molimm.2006.03.020.
44.Molfino NA, Kuna P, Leff JA, et al. Phase 2, randomised placebo-controlled trial to evaluate the efficacy and safety of an anti-GM-CSF antibody (KB003) in patients with inadequately controlled asthma[J]. BMJ Open,2016,6(1):e007709. DOI:10.1136/bmjopen-2015-007709.
45.Fan L, Wang X, Fan L, et al. MicroRNA-145 influences the balance of Th1/Th2 via regulating RUNX3 in asthma patients[J]. Exp Lung Res,2016,42(8-10):417-424. DOI:10.1080/01902148.2016.1256452.
46.Johansson K, Malmhäll C, Ramos-Ramírez P, et al. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation[J]. J Allergy Clin Immunol,2017,139(3):1007-1016.e9. DOI:10.1016/j.jaci.2016.06.035.
47.Xu H, Gu L N, Yang Q Y, et al. MiR-221 promotes IgE-mediated activation of mast cells degranulation by PI3K/Akt/PLCγ/Ca(2+) pathway[J]. J Bioenerg Biomembr, 2016, 48(3):293-299. DOI:10.1007/s10863-016-9659-7.
48.Kästle M,Bartel S,Geillinger-Kästle K,et al. microRNA cluster 106a~363 is involved in T helper 17 cell differentiation[J]. Immunology,2017,152(3):402-413.DOI:10.1111/imm.12775.
49.Kumar M, Ahmad T, Sharma A, et al. Let-7 microRNA–mediated regulation of IL-13 and allergic airway inflammation[J]. J Allergy Clin Immunol, 2011,128(5):1077-1085.e1-10. DOI:10.1016/j.jaci.2011.04.034.
50.Heffler E, Allegra A, Pioggia G, et al. MicroRnas Profiling in Asthma: Potential Biomarkers and Therapeutic Targets[J]. Am J Respir Cell Mol Biol,2017,57(6):642-650. DOI:10.1165/rcmb.2016-0231TR.
51.Kim HI, Hong SH, Ku JM, et al. Tonggyu-tang, a traditional Korean medicine, suppresses pro-inflammatory cytokine production through inhibition of MAPK and NF-κB activation in human mast cells and keratinocytes[J]. BMC Complement Altern Med, 2017,17(1):186-193. DOI:10.1186/s12906-017-1704-5.
52.Garn H, Renz H. GATA-3-specific DNAzyme -A novel approach for stratified asthma therapy[J]. Eur J Immunol,2017,47(1):22-30. DOI:10.1002/eji.201646450.
53.Katial RK, Martucci M, Burnett T, et al. Nonsteroidal anti-inflammatory-induced inhibition of signal transducer and activator of transcription 6 (STAT-6) phosphorylation in aspirin-exacerbated respiratory disease[J]. J Allergy Clin Immunol,2016,138(2):579-585. DOI:10.1016/j.jaci.2015.11.038.
54.Nair P, Gaga M, Zervas E, et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized,placebo-controlledclinical trial[J]. Clin Exp Allergy,2012,42(7):1097-1103. DOI:10.1111/j.1365-2222.2012.04014.x.
55.O'Byrne PM, Metev H, Puu M, et al. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial[J]. Lancet Respir Med, 2016,4(10):797-806. DOI:10.1016/S2213-2600(16)30227-2.
56.Kuna P,Bjermer L,Tornling G. Two Phase II randomized trials on the CRTh2 antagonist AZD1981 in adults with asthma[J]. Drug Des Devel Ther,2016,10:2759-2770.DOI:10.2147/DDDT.S105142.
57.Miller D,Wood C,Bateman E,et al. A randomized study of BI 671800, a CRTH2 antagonist, as add-on therapy in poorly controlled asthma[J]. Allergy Asthma Proc,2017,38(2):157-164. DOI:10.2500/aap.2017.38.4034.
58.Adner M, Starkhammar M, Georén S K, et al. Toll-like receptor (TLR) 7 decreases and TLR9 increases the airway responses in mice with established allergic inflammation[J]. Eur J Pharmacol,2013, 718(1-3):544-551. DOI:10.1016/j.ejphar.2013.09.004.
59.Lee HY, Hur J, Kim IK, et al. Effect of nintedanib on airway inflammation and remodeling in a murine chronic asthma model[J]. Exp Lung Res,2017,43(4-5):187-196.DOI:10.1080/01902148.2017.1339141.
60.Royce SG, Dang W, Yuan G, et al. Effects of the Histone Deacetylase Inhibitor, Trichostatin A, in a Chronic Allergic Airways Disease Model in Mice[J]. Arch Immunol Ther Exp(Warsz),2012,60(4):295-306. DOI:10.1007/s00005-012-0180-3.
61.Han W, Li J, Tang H, et al. Treatment of obese asthma in a mouse model by simvastatin is associated with improving dyslipidemia and decreasing leptin level[J]. Biochem Biophys Res Commun,2017,484(2):396-402. DOI:10.1016/j.bbrc.2017.01.135.
62.Blanquiceth Y, Rodríguezperea AL, Guevara JH, et al. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma[J]. Front Immunol,2016,7:620-631. DOI:10.3389/fimmu.2016.00620.
63.Wan KS, Liu YC, Huang CS, et al. Effects of low-dose clarithromycin added to fluticasone on inflammatory markers and pulmonary function among children with asthma: A randomized clinical trial[J]. Allergy Rhinol(Providence),2016,7(3):131-134. DOI:10.2500/ar.2016.7.0168.
64.Gauvreau GM, Boulet LP, Leigh R, et al. A NonSteroidal Glucocorticoid Receptor Agonist Inhibits Allergen-Induced Late Asthmatic Responses[J]. Am J Respir Crit Care Med,2015,191(2):161-167. DOI:10.1164/rccm.201404-0623OC.
上一篇:
重症哮喘气道炎症机制的新进展
下一篇:
支气管哮喘气道重塑的研究进展