哮喘联盟论坛

搜索
热搜: 活动 交友 discuz
查看: 5533|回复: 0
打印 上一主题 下一主题

以嗜酸粒细胞为目标的哮喘治疗

[复制链接]

0

主题

0

好友

1106

魅力

管理员

Rank: 9Rank: 9Rank: 9

跳转到指定楼层
1#
发表于 2013-1-4 19:44 |只看该作者 |倒序浏览
 
以嗜酸粒细胞为目标的哮喘治疗
杜文  刘春涛
四川大学华西医院呼吸内科(四川成都610041)
支气管哮喘是一种多种细胞及其组分参与的气道慢性炎症性疾病,其中嗜酸粒细胞浸润在组织病理学上具有相对的特异性,因此既往也有文献将哮喘气道炎症成为“变应性嗜酸粒细胞性炎症”。近年来发现哮喘气道炎症具有异质性的特点,呈现不同的炎症表型,相当多的哮喘患者其占优势的气道炎症细胞并非嗜酸粒细胞而是中性粒细胞。但不可否认的是嗜酸粒细胞在哮喘气道炎症以及气道重构中仍然扮演重要的角色。嗜酸粒细胞是宿主免疫应答中主要的效应细胞之一,可释放细胞毒颗粒性物质如ECP、END等以防御病原尤其是寄生虫的入侵,但在哮喘等变态反应性疾病的发病过程中,嗜酸粒细胞却是一把双刃剑,其有毒性产物可造成气道粘膜损伤、血浆渗出、粘液腺增生和粘液高分泌等诸多病理改变,同时嗜酸粒细胞亦可通过释放细胞因子、趋化因子、粘附分子以及白三烯等炎性介质主动参与气道炎症。鉴于嗜酸粒细胞在哮喘气道炎症当中的重要性和特殊性,多年以来在针对嗜酸粒细胞的靶向治疗领域进行了大量的研究,早期临床试验的结果并不理想,导致这一领域的研究陷入停滞。近期因新的生物制剂的问世、基于不同临床和炎症表型的策略等,针对嗜酸粒细胞的治疗方法重新受到关注,并显示出极有希望的前景。本文兹对相关研究的进展作一简单的回顾和展望。
     一、IL-5、IL-3、GM-CSF
白细胞介素-5(IL-5)主要由2型辅助性T细胞(Th2)产生,可影响嗜酸粒细胞的存活、活化、成熟和募集,是引起嗜酸性细胞气道浸润的核心因素。在实验性哮喘小鼠模型已证实缺乏IL-5和IL-5α受体(IL-5Rα)时不能引起小鼠气道嗜酸粒细胞增多,反之小鼠肺中如过度表达IL-5则可自发形成显著的嗜酸粒细胞增多并伴随AHR[1~3]。IL-5和IL-5Rα的反义分子可以拮抗IL-5的作用,显著减少嗜酸粒细胞、减轻哮喘动物模型的症状及病理表现[4、5]。但令人困惑的是,临床试验中抗IL-5单克隆抗体虽然能减少轻至中度哮喘患者血液及痰液中的嗜酸粒细胞,但却不能改善哮喘症状、AHR以及迟发相变态反应[6~8]。
白细胞介素-3(IL-3)和粒细胞-巨细胞集落刺激因子(GM-CSF)能延长嗜酸粒细胞的存活。IL-3、IL-5、GM-CSF受体的α链与特异性配体结合,而与信号传导相关的β链是相同的[9]。Allakhverdi等制出降解β链mRNA的反义寡核苷酸143(AS-ODN143),AS-ODS143可显著减少实验性哮喘大鼠模型GM-CSF、IL-3和 IL-5mRNA和蛋白质的表达,并抑制嗜酸粒细胞浸润和AHR的发展[10]。
    二、趋化因子受体CCR-3
CCR-3是一种七次跨膜的G蛋白耦连受体,主要表达于嗜酸粒细胞CD34+祖细胞。其配体有CCL-5 (RANTES)、 CCL-7(单核细胞趋化蛋白(MCP)-3)、CCL-8(MCP-2)、CCL-11(嗜酸粒细胞趋化蛋白(eotaxin)-1)、CCL-13(MCP-4)、 CCL-24 (eotaxin -2)、CCL-26(eotaxin -3)。在人体试验和小鼠实验中已证明CCR-3及其特异性配体对过敏性疾病的发病机制的影响。哮喘患者CCR-3及其配体表达增加与疾病的严重程度相关[11]。一些高选择性的哌啶衍生物(如YM-344031、YM-355179、GW701897B、GSK766994等[12~15]作为CCR-3拮抗剂替代eotaxin,可显著减少肺组织中嗜酸粒细胞的数量、降低气道反应性。双特异性抗体LC-1和YM-344484作用于嗜酸粒细胞和肥大细胞,使实验性哮喘小鼠嗜酸粒细胞浸润减少[16,17]。TPI ASM8是AS-ODN143和抗CCR-3(AS-ODNASA4)两种反义ODNs的混合,既能抑制细胞因子对嗜酸粒细胞募集、成熟、活化、存活的调节作用,也能抑制嗜酸粒细胞趋化到肺内[18]。一项三中心双盲随机交叉试验也证实了TPI ASM8对过敏性哮喘的治疗作用[19]。
    三、前列腺素受体DP1、DP2
DP1受体是一个7次跨膜G蛋白耦连受体,识别前列腺素D2(PGD2)。PGD2由活化的肥大细胞释放,并在过敏反应的启动和持续中起重要作用。在体外,PGD2通过DP1受体引起嗜酸粒细胞的趋化。DP受体拮抗剂BWA868c既可阻断PGD2引起的豚鼠骨髓释放嗜酸粒细胞,也可阻止嗜酸粒细胞迁移[20]。在实验性哮喘绵羊,DP1受体拮抗剂S-5751可减缓支气管收缩、气道炎症和AHR的发展[21]。
PGD2也被DP2受体识别,DP2受体又叫做表达于Th细胞的趋化因子同源性受体(CRTH2)。在过敏性反应中CRTH2能介导嗜酸粒细胞迁移到肺,加重哮喘大鼠和小鼠的病理特征。而CRTH2的拮抗剂Ramatroban、TM30089、BI761800能缓解哮喘动物模型的病理特征[22,23]。  
    四、CD23、 CD48和CD147
低亲和力免疫球蛋白(Ig)E受体CD23是一种单链膜糖蛋白,由嗜酸粒细胞表达,介导IgE相关的免疫应答。过敏患者的肺泡巨噬细胞、血液淋巴细胞、气道平滑肌细胞都表达CD23。缺乏CD23的实验性哮喘小鼠AHR和病理特征显著减轻[24]。在体外,抗CD23单克隆抗体Lumiliximab抑制来源于过敏患者的T细胞和抗原呈递细胞生成促炎因子[25]。I期临床试验证明轻中度持续性哮喘患者对于静脉注射这种抗体具有良好的耐受性[26]。
CD48是一种糖基锚定蛋白,过敏性哮喘患者的嗜酸粒细胞上可检测到CD48的表达增加,其表达由IL-3调节。在实验性哮喘小鼠模型中证实变应原刺激时CD48表达上调。用抗IL-3单克隆抗体使CD48的表达明显减少,气道炎性反应减轻[27]。抗CD48抗体可减轻气道炎症反应、杯状细胞增生乃至气道平滑肌增厚。
CD147也称为细胞外基质金属蛋白诱导剂(EMMPRIN),是I型跨膜糖蛋白,表达于嗜酸粒细胞和T细胞。CD147表达的增加可见于各种炎症性疾病如类风湿性关节炎、败血症、血管平滑肌疾病。在实验性哮喘小鼠用抗CD147抗体干预,嗜酸粒细胞和CD4+T细胞浸润、杯状细胞增生、AHR均消失[28]。
    五、Siglec f / Siglec-8
Siglec f是一种唾液酸结合Ig超家族受体,高表达于小鼠嗜酸粒细胞,在人类的同源体是Siglec-8。给IL-5转基因小鼠注射单剂量抗Siglec f单克隆抗体导可使血中嗜酸粒细胞迅速下降[29]。给慢性哮喘小鼠模型注射抗Siglec f抗体,不仅骨髓、血液和气道组织中的嗜酸粒细胞数量减少,上皮下纤维的水平、气道平滑肌的厚度、杯状细胞数量也有所降低[30]。
   六、结论
嗜酸粒细胞是炎症反应重要的效应细胞,在诸如支气管哮喘等过敏性疾病。对于嗜酸粒细胞的生物学功能的研究仍然很不完全,目前采用抗嗜酸粒细胞的单一的分子疗法在哮喘治疗中价值存在很大的局限性。鉴于调节嗜酸粒细胞功能涉及多种信号分子,今后应着眼于同时针对多种调节分子的联合干预策略。也许对吸入糖皮质激素无效的哮喘患者,这种以嗜酸粒细胞为靶向的治疗可以成为未来可供选择的方法。
 
参考文献
1. Lee JJ, McGarry MP, Farmer SC, Denzler KL, et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 1997;185:2143-2156.
2. Foster PS, Hogan SP, Ramsay AJ,et al. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 1996;183:195-201.
3. Yoshida T, Ikuta K, Sugaya H, et al. Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity 1996;4:483-494.
4. Hamelmann E, Oshiba A, Loader J, et al.Antiinterleukin-5 antibody prevents airway hyperresponsiveness in a murine model of airway sensitization. Am J Respir Crit Care Med 1997;155:819-825.
5. Lach-Trifilieff E, McKay RA, Monia BP, et al. In vitro and in vivo inhibition of interleukin (IL)-5-mediated eosinopoiesis by murine IL-5Ralpha antisense oligonucleotide. Am J Respir Cell Mol Biol 2001;24:116-122.
6. Leckie MJ, ten Brinke A, Khan J, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness, and the late asthmatic response. Lancet 2000;356:2144-2148.
7. Flood-Page PT, Menzies-Gow AN, Kay AB, et al. Eosinophil"s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 2003;167:199-204.
8. Flood-Page P, Swenson C, Faiferman I, et al. International Mepolizumab Study Group. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 2007;176:1062-1071.
9. Woodcock JM, Bagley CJ, Zacharakis B, al. A single tyrosine residue in the membrane-proximal domain of the granulocyte-macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 receptor common beta-chain is necessary and sufficient for high affinity binding and signaling by all three ligands. J Biol Chem 1996;271:25999-26006.
10. Allakhverdi Z, Allam M, Renzi PM. Inhibition of antigen-induced eosinophilia and airway hyperresponsiveness by antisense oligonucleotides directed against the common beta chain of IL-3, IL-5, GM-CSF receptors in a rat model of allergic asthma. Am J Respir Crit Care Med 2002;165:1015-1021.
11. Ying S, Robinson DS, Meng Q,et al. Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant co-localization of eotaxin mRNA to bronchial epithelial and endothelial cells. Eur J Immunol 1997;27:3507-3516.
12. Suzuki K, Morokata T, Morihira K, et al. In vitro and in vivo characterization of a novel CCR3 antagonist, YM- 344031. Biochem Biophys Res Commun 2006;339:1217-1223.
13. Morokata T, Suzuki K, Masunaga Y, et al. A novel, selective, and orally available antagonist for CC chemokine receptor 3. J Pharmacol Exp Ther 2006;317:244-250.
14. Das AM, Vaddi KG, Solomon KA, et al. Selective inhibition of eosinophil influx into the lung by small molecule CC chemokine receptor 3 antagonists in mouse models of allergic inflammation. J Pharmacol Exp Ther 2006;318:411-417.
15. Fryer AD, Stein LH, Nie Z, et al. Neuronal eotaxin and the effects of CCR3 antagonist on airway hyperreactivity and M2 receptor dysfunction. J Clin Invest 2006;116:228-236.
16. Munitz A, Bachelet I, Levi-Schaffer F. Reversal of airway inflammation and remodeling in asthma by a bispecific antibody fragment linking CCR3 to CD300a. J Allergy Clin Immunol 2006;118:1082-1089.
17. Suzuki K, Morokata T, Morihira K, et al. A dual antagonist for chemokine CCR3 receptor and histamine H1 receptor. Eur J Pharmacol 2007;563:224-232.
18. Allakhverdi Z, Allam M, Guimond A, et al. Multitargeted approach using antisense oligonucleotides for the treatment of asthma. Ann N Y Acad Sci 2006;1082:62-73.
19. Gauvreau GM, Boulet LP, Cockcroft DW, et al. Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. Am J Respir Crit Care Med 2008;177:952-958.
20. Schratl P, Royer JF, Kostenis E, et al. The role of the prostaglandin D2 receptor, DP, in eosinophil trafficking. J Immunol 2007;179:4792-4799.
21. Shichijo M, Arimura A, Hirano Y, et al. A prostaglandin D2 receptor antagonist modifies experimental asthma in sheep. Clin Exp Allergy 2009;39:1404-1414.
22. Uller L, Mathiesen JM, Alenmyr L, et al. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation. Respir Res 2007;8:16.
23. Stearns BA, Baccei C, Bain G, et al. Novel tricyclic antagonists of the prostaglandin D2 receptor DP2 with efficacy in a murine model of allergic rhinitis. Bioorg Med Chem Lett 2009;19:4647-4651.
24. Dasic G, Juillard P, Graber P,et al. Critical role of CD23 in allergen-induced bronchoconstriction in a murine model of allergic asthma. Eur J Immunol 1999;29:2957-2967.
25. Poole JA, Meng J, Reff M, et al. Anti-CD23 monoclonal antibody, lumiliximab, inhibited allergen-induced responses in antigen-presenting cells and T cells from atopic subjects. J Allergy Clin Immunol 2005;116:780-788.
26. Rosenwasser LJ, Busse WW, Lizambri RG, et al. Allergic asthma and an anti-CD23 mAb (IDEC-152): results of a phase I, single-dose, dose-escalating clinical trial. J Allergy Clin Immunol 2003;112:563-570.
27. Munitz A, Bachelet I, Eliashar R, et al. CD48 is an allergen and IL-3-induced activation molecule on eosinophils. J Immunol 2006;177:77-83.
28. Gwinn WM, Damsker JM, Falahati R, et al. Novel approach to inhibit asthma-mediated lung inflammation using anti-CD147 intervention. J Immunol 2006;177:4870-4879.
29. Zimmermann N, McBride ML, Yamada Y, et al. Siglec-F antibody administration
to mice selectively reduces blood and tissue eosinophils. Allergy 2008;63:1156-1163.
30. Song DJ, Cho JY, Lee SY, et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J Immunol 2009;183:5333-5341.
您需要登录后才可以回帖 登录 | 注册

手机版|Archiver|哮喘联盟

GMT+8, 2024-12-22 14:42 , Processed in 0.020926 second(s), 19 queries .

Powered by Discuz! X2.5

© 2001-2012 Comsenz Inc.

回顶部