Kruzel等研究了乳铁蛋白(LF)对豚草花粉提取物(RWE)诱导的支气管上皮细胞氧化应激水平以及过敏性气道炎症和粘蛋白生成细胞聚集的影响。结果表明,在铁存在的情况下,超氧阴离子可能被转化为更多的活性氧自由基,加剧抗原诱导的气道炎症,而LF可降低RWE诱导的支气管上皮细胞活性氧(ROS)水平、显著减轻嗜酸性粒细胞气道浸润、抑制粘蛋白产生细胞的发育、减轻非氧化还原活性豚草花粉主要变应原(Amb A 1)所致的变态反应性炎症14。因此,LF作为一种铁相关调节因子,可以减轻其他氧化剂对抗原诱导的气道炎症的影响。
参考文献
1.Papi, A., Brightling, C., Pedersen, S. E. & Reddel, H. K. Asthma. The Lancet391, 783-800, doi:10.1016/s0140-6736(17)33311-1 (2018).
2.Lal, A. Iron in Health and Disease: An Update. Indian J Pediatr87, 58-65, doi:10.1007/s12098-019-03054-8 (2020).
3.Ali, M. K. et al. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol88, 181-195, doi:10.1016/j.biocel.2017.05.003 (2017).
4.Cloonan, S. M. et al. The "Iron"-y of Iron Overload and Iron Deficiency in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med196, 1103-1112, doi:10.1164/rccm.201702-0311PP (2017).
5.Evstatiev, R. & Gasche, C. Iron sensing and signalling. Gut61, 933-952, doi:10.1136/gut.2010.214312 (2012).
6.Fuqua, B. K., Vulpe, C. D. & Anderson, G. J. Intestinal iron absorption. J Trace Elem Med Biol26, 115-119, doi:10.1016/j.jtemb.2012.03.015 (2012).
7.McKie, A. T. et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science291, 1755-1759, doi:10.1126/science.1057206 (2001).
8.Abboud, S. & Haile, D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem275, 19906-19912, doi:10.1074/jbc.M000713200 (2000).
9.Fuqua, B. K. et al. The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS One9, e98792, doi:10.1371/journal.pone.0098792 (2014).
10.Ganz, T. Systemic iron homeostasis. Physiol Rev93, 1721-1741, doi:10.1152/physrev.00008.2013 (2013).
11.Gammella, E., Buratti, P., Cairo, G. & Recalcati, S. Macrophages: central regulators of iron balance. Metallomics6, 1336-1345, doi:10.1039/c4mt00104d (2014).
12.Vlasić, Z. et al. Iron and ferritin concentrations in exhaled breath condensate of children with asthma. J Asthma46, 81-85, doi:10.1080/02770900802513007 (2009).
13.Bibi, H. et al. Zn/Ga-DFO iron-chelating complex attenuates the inflammatory process in a mouse model of asthma. Redox Biol2, 814-819, doi:10.1016/j.redox.2014.06.009 (2014).
14.Kruzel, M. L., Bacsi, A., Choudhury, B., Sur, S. & Boldogh, I. Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology119, 159-166, doi:10.1111/j.1365-2567.2006.02417.x (2006).
15.Simonsson, B. G., Jacobs, F. M. & Nadel, J. A. Role of autonomic nervous system and the cough reflex in the increased responsiveness of airways in patients with obstructive airway disease. J Clin Invest46, 1812-1818, doi:10.1172/jci105671 (1967).
16.Ali, M. K. et al. Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. Eur Respir J55, doi:10.1183/13993003.01340-2019 (2020).
17.Ghio, A. J. Asthma as a disruption in iron homeostasis. Biometals29, 751-779, doi:10.1007/s10534-016-9948-y (2016).
18.Maazi, H., Shirinbak, S., Bloksma, N., Nawijn, M. C. & van Oosterhout, A. J. Iron administration reduces airway hyperreactivity and eosinophilia in a mouse model of allergic asthma. Clin Exp Immunol166, 80-86, doi:10.1111/j.1365-2249.2011.04448.x (2011).
19.Bucca, C. et al. Effect of iron supplementation in women with chronic cough and iron deficiency. Int J Clin Pract66, 1095-1100, doi:10.1111/ijcp.12001 (2012).
20.Kleinman, M. T. et al. Human exposure to ferric sulfate aerosol: effects on pulmonary function and respiratory symptoms. Am Ind Hyg Assoc J42, 298-304, doi:10.1080/15298668191419767 (1981).